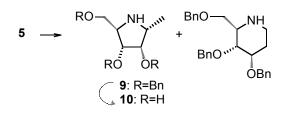

Sugar-derived aziridines : functionalization via lithiation of the aziridine ring

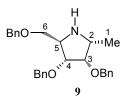
Experimental procedures and spectroscopic data

To a solution of amine **3** (226 mg, 0.54 mmol) in CH₃CN (25 mL), under Ar atmosphere, was added DMAP (289 mg, 2.4 mmol), dissolved in CH₃CN (5 mL). A solution of TfN₃* in CH₂Cl₂ (1.7 mmol) was added and the mixture was heated to 40°C for 3 h. The solvent was removed and the residue was purified on silica gel (eluent: Cyclohexane/AcOEt 8/2 then 1/1) to give **5** as a pale yellow oil (124 mg) 55%.

 $\alpha_{\rm D}$ = -18.7 (c=1.7)

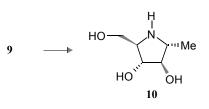

¹H NMR(500 MHz, CDCl₃): δ 1.80 (dd, 1H, *J*=3.7 *J*=0.8, H₁); 1.83 (dd, 1H, *J*=6.1 *J*=0.8, H₁); 2.57 (ddd, 1H, *J*=6.1 *J*=3.7 *J*=0.9, H₂); 3.35 (dd, 1H, *J*=6.1 *J*=9.2, H₅); 3.41 (t, 1H, *J*=9.2, H₆); 3.70 (dd, 1H, *J*=9.2 *J*=6.1, H₆); 4.02 (t, 1H, *J*=0.9, H₄); 4.17 (s, 1H, H₃); 4.43 (2d, 2H, *J*=11.0, O-C<u>H₂-Ph</u>); 4.46 (s, 2H, O-C<u>H₂-Ph</u>); 4.59 (2d, 2H, *J*=11.4, O-C<u>H₂-Ph}); 7.24-7.34 (m, 15H, Ph).</u>

¹³C NMR (62.5 MHz, CDCl₃) : δ 28.7 (C₁), 43.4 (C₂), 69.2 (C₅), 73.1-71.4-71.1-71.0 (4xO-<u>C</u>H₂), 83.9 (C₃), 86.9 (C₄), 128.4-127.5 (3xPh), 138.2-137.7 (C ipso).


* Preparation of TfN3.

To a cold (0°C) solution of NaN₃ (1.60 g, 24.6 mmol) in water (4 mL) were successively added CH_2Cl_2 (5 mL) and, under vigorous stirring, Tf_2O (0.82 mL, 5 mmol), freshly distilled over P_2O_5 . The mixture was then stirred at 0°C for 2 h.

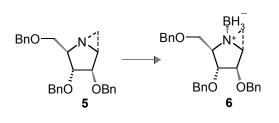
The organic layer was recovered, the aqueous layer was extracted with CH_2Cl_2 (3x3 mL). The combined organic solutions were washed with saturated NaHCO₃ (4 mL), water, then dried over Na₂SO₄. The 0.18 M solution of TfN₃ thus obtained was kept at 4°C over 4Å molecular sieves.


The aziridine **5** (15 mg, 0.04 mmol), was dissolved in AcOEt (5 mL) and hydrogenated over $Pd(OH)_2/C$, 10%. The reaction mixture was stirred for 12h under pressure (5 bar). The catalyst was filtered-off, the solvent was removed and the residue was purified (silica-gel plate, eluent: Cyclohexane/AcOEt 2/8). The least polar fraction is **9** (7 mg, 55%) the other fraction is a piperidine derivative (4 mg, 25%)

 $R_f = 0.35$ (Silicagel plate, AcOEt/MeOH 92/8)

¹H NMR(250 MHz, CDCl₃): δ 1.22 (d, 3H, *J*=6.6, H₁); 3.22 (dq, 1H, *J*=6.6 *J*=5.6, H₂); 3.53-3.39 (m, 3H, H₅, H₆, H₆); 3.63 (dd, 1H, *J*=3.5 *J*=5.6, H₃); 3.88 (dd, 1H, *J*=3.5 *J*=3.7, H₄); 4.53 (m, 6H -CH₂-Ph); 7.32-7.27 (m, 15H, Ph).

¹³C NMR(62.5 MHz, CDCl₃): δ 19.2; 57.3; 61.7; 70.4; 71.8; 71.9; 73.2; 86.4; 90.7; 128.3-127.,6 (3xPh); 138.1(C ipso).

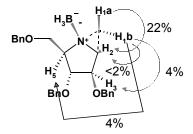


9 (7 mg , 0.017 mmol), was dissolved in *i*-PrOH (5mL) and hydrogenated over $Pd(OH)_2/C$, 10% (10 mg). The reaction mixture was stirred for 45 h under pressure (50 bar). The catalyst was filtered-off, the solvent was removed and the residue was purified (silica-gel plate, eluent: $CHCl_3/MeOH/H_2O/NH_4OH 5/4/1/0.1$) to afford **10** (1mg, 40%).

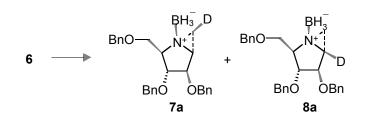
R_f= 0.20 (CHCl₃/MeOH/H₂O/NH₄OH, 5/4/1/0.1)

¹H NMR (250 MHz, CD₃OD): δ 1.18 (d, 3H, *J*=6.5, 3xH₁); 2.92 (dq, 1H, *J*=6.5 *J*=8.0, H₂); 2.98 (dt, 1H, *J*=5.0 *J*=6.7, H₅); 3.47 (dd, 1H, *J*=8.0 *J*=6.8, H₃); 3.54 (dd, 1H, *J*=11.2 *J*=6.7, H₆); 3.63 (dd, 1H, *J*=11.2 *J*=5.0, H₆); 3.76 (dd, 1H *J*=6.8 *J*=6.7, H₄).

<u>Litt</u>⁷ (500 MHz, CD₃OD): δ 1.19 (d, 3H, *J*=6.5, 3xH₁); 2.92 (dq, 1H, *J*=6.5 *J*=7.5, H₂); 2.98 (ddd, 1H, *J*=4.5 *J*=6.5 *J*=6.5, H₅); 3.50 (dd, 1H, *J*=7.5 *J*=6.5, H₃); 3.54 (dd, 1H, *J*=11 *J*=6, H₆); 3.64 (dd, 1H, *J*=11 *J*=4.5, H₆); 3.75 (dd, 1H *J*=6.5 *J*=6.5, H₄).

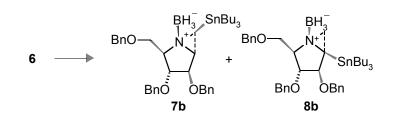


To a cold (0°C) solution of **5** (47 mg, 0.12 mmol) in THF (2 mL), was added BH₃-THF (1M in THF, 0.16 mL, 0.16 mmol) via syringe. After 30 min the solvent was evaporated and the residue was filtered through a pad of silicagel (eluent: Cyclohexane/AcOEt 7/3) to afford pure **6** (46 mg, 90%) as a white gum.

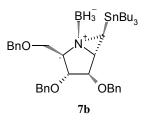

 $R_f = 0.50$ (Cyclohexane/AcOEt 8/2).

¹H NMR (250 MHz, CDCl₃): δ 0.9-2.1 (very broad signal, 3H, BH₃); 2.41 (dd, 1H, *J*=1.6 *J*=7.2, H₁); 2.68

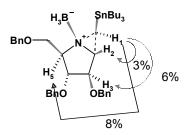
J=5.0, H_{6'}); 4.39 (s, 2H, O-C<u>H</u>₂-Ph); 4.42 (2d, 2H, *J*=12.5, O-C<u>H</u>₂-Ph); 4.53 (2d, 2H, *J*=12.5, O-C<u>H</u>₂-Ph); 7.24-7.34 (m, 15H, Ph).



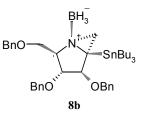
¹³C NMR (62.5 MHz, CDCl₃) : δ 39.2 (C₁), 52.2 (C₂), 69.3 (C₅), 73.3-71.5-71.3-67.8 (4xO-<u>C</u>H₂), 81.9 (C₃ or C₄), 84.7 (C₄ or C₃), 127.6-128.5 (3xPh), 136.9-137.9 (C ipso).


The complex 6 (30 mg, 0.07 mmol), was placed in a 10 mL, round-bottomed flask, under Ar atmosphere. Cumene (1mL), was added, then (-)-sparteine (64 μ L, 0.28 mmol). The mixture was cooled to -78° C, and sec-BuLi (215 μ L, 0.28 mmol) was added. After stirring for 6 h, D₂O (10 eq.) was added. The mixture was extracted three times with *t*-butyl methyl ether (3x1.5 mL), the solvent was removed under vacuum and the residue was purified by chromatography (silicagel plate, eluent: Cyclohexane/AcOEt 7/3) to give a 1:1 mixture of 7a and 8a (24 mg, 80%).

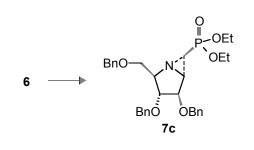
¹H NMR (250 MHz, CDCl₃): δ 0.9-2.1 (very broad signal, 3H, BH₃); 2.41 (d, 0.5H, *J*=1.6, H₁ (**8a**)); 2.68 (m, 1H, H₁, (**7a** + **8a**)); 2.97 (d, 0.5H, *J*=4.6, H₂(**7a**)); 3.49 (ddd, 1H, *J*=12.5 *J*=5.0 *J*=1.0, H₅); 3.56 (dd, 1H, *J*=10.0 *J*=12.5, H₆); 4.03 (s, 1H, H₃); 4.28 (s, 1H, H₄); 4.32 (dd, 1H, *J*=10.0 *J*=5.0, H₆); 4.39 (s, 2H, O-C<u>H₂-Ph</u>); 4.42 (2d, 2H, *J*=12.5, O-C<u>H₂-Ph</u>); 4.53 (2d, 2H, *J*=12.5, O-C<u>H₂-Ph</u>); 7.24-7.34 (m, 15H, Ph).


The complex 6 (19 mg, 0.044 mmol), was placed in a 2 mL, round-bottomed flask, under Ar atmosphere ; cumene (1 mL) was added then (-)-sparteine (42 μ L, 0.18 mmol). The mixture was cooled to -78°C and *sec*-BuLi (136 μ L, 0.18 mmol) was added. The mixture was stirred at -78°C for 5h and Bu₃SnCl (60 μ L, 0.22 mmol) was added. The bath was removed and the mixture was stirred for 30 min at which time NaHCO₃ (saturated, 0.2 mL) was added.

The mixture was extracted twice with CH_2Cl_2 (2x1.5 mL), the solvent was removed under reduced pressure and the residue was purified on a thick silicated plate (eluent: Cyclobevane/AcOEt 07/3 2 migrations) to


R_f=0.5 (Cyclohexane/AcOEt 9/1).

¹H NMR (250 MHz, CDCl₃): δ 0.88 (t, 9H, *J*=7.2, CH₃); 1.03 (m, 6H); 1.32 (m, 6H); 1.49 (m, 6H); 2.17 (d, 1H; *J*=6,7, H₁); 2.82 (d, 1H, *J*=6.7, H₂); 3,38 (dd, 1H, *J*=4.6 *J*=11.6, H₅); 3.58 (dd, 1H, *J*=9.1 *J*=4.6, H₆); 4.03 (s, 1H, H₃); 4.26 (s, 1H, H₄); 4.28 (d, 1H, *J*=11.6 *J*=9.1, H₆·); 4.39 (s, 2H, O-C<u>H</u>₂-Ph); 4.43 (2d, 2H, *J*=12.1, O-CH₂-Ph); 4.53 (2d, 2H, *J*=11.8, O-CH₂-Ph); 7.34-7.21 (m, 15H, Ph).

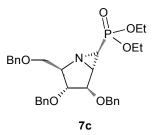

¹³C NMR (62.5MHz, CDCl₃): δ 11.6; 14.3; 27.2; 28.3; 41.7 (C₁); 55.8 (C₂); 68.7 (C₅); 73.3-71.5-71.3-71.0 (OCH₂); 83.4 (C₃ or C₄); 86.0 (C₄ or C₃); 128.5-127.6 (3xPh); 138.1-137.8-137.3 (C ipso).

HRMS (ESI, CH3CN) calcd for for C₃₉H₅₈BNO₃Sn (-BH₃+H) 706.3291, found 706.3294

R_f=0.55 (Cyclohexane/AcOEt 9/1).

¹H NMR (250 MHz, CDCl₃): δ 0.86 (m, 9H); 0.95 (m, 6H); 1.23 (m, 6H); 1.45 (m, 6H); 2.23 (s, 1H, H₁); 2.78 (s, 1H, H₁·); 3.41 (dd, 1H, *J*=9,7 *J*=11,5, H₆); 3.61(dd, 1H, *J*=5,7 *J*=9,7, H₅); 3.93 (s, 1H, H₃); 4.24 (s, 1H, H₄); 4.30 (m, 6H, O-C<u>H₂-Ph</u>); 4.58 (dd, 1H, *J*=11,5 *J*=5.7 H₆^o); 7.30-7.26 (m, 15H, Ph).

1. Using ClP(OEt)₂


The complex 6 (17 mg. 0.04 mmol). was placed in a 2 mL. round-bottomed flask. under Ar atmosphere.

mmol) was added. The bath was replaced by a cool (-30° C) bath and the mixture was stirred for 2 h at which time NaHCO₃ (saturated, 0.2 mL) was added.

The mixture was extracted twice with CH_2Cl_2 (2x1,5 mL), the solvent was removed under reduced pressure and the residue was purified on a thick silicagel plate (eluent : Cyclohexane/AcOEt 1/9) to afford 7c (3.4 mg, 20%).

2. Using $ClP(O)(OEt)_2$

Same procedure as above except $ClP(O)(OEt)_2$ was used and the mixture was stirred for 15 min at $-30^{\circ}C$ (instead of 2h). The yield was 15%.

R_f=0.3 (Cyclohexane/AcOEt 1/9).

¹H NMR (250 MHz, CDCl₃): δ 1.29 (m, 6H); 2.24 (dd, 1H; *J*=3.4 $J^2_{P,C}$ =16.6, H₁); 2.89 (dd, 1H, *J*=3.4 $J^3_{P,C}$ =9.8, H₂); 3.37 (dd, 1H, *J*=10.6 *J*=8.0, H₆); 3.44 (dd, 1H, *J*=10.6 *J*=4.1, H₅); 3.80 (dd, 1H, *J*=8.0 *J*=4.1, H₆·); 4.07 (s, 1H, H₄); 4.21-4.01 (m, 4H); 4.22 (s, 1H, H₃); 4.42 (s, 2H, O-C<u>H₂-Ph); 4.42 (2d, 2H, *J*=12.0, O-C<u>H₂-Ph); 4.47 (2d, 2H, *J*=6.0, O-C<u>H₂-Ph); 7.37-7.22 (m, 15H, Ph).</u></u></u>

¹³C NMR (62.5 MHz, CDCl₃): δ 16.4 (2C); 32.5 (d, $J_{C,P}$ =208 C₁); 47.4 (d, $J_{C,P}$ =5 C₂); 62.5 (2xCH₂) 70.1 (C₅); 73.1-71.6-71.3-70.6 (OCH₂); 83.6 (C₃ or C₄); 86.1 (C₄ or C₃); 128.6-127.6 (3xPh); 138.2-137.5-137.4 (C ipso).

³¹P NMR (101.5 MHz): 22.37.

HRMS (ESI, MeOH) calcd for C₃₁H₃₈NO₆P (+Na) 574.2334, found 574.2342